The New York Times Building New York, NY

IPD/BIM Thesis Technical Report #2

Andres R. Perez Structural Option – Team #3

Faculty Consultant: Dr. Andres Lepage October 30th, 2009

TABLE OF CONTENTS

TABLE OF CONTENTS
EXECUTIVE SUMMARY
Structural System Description5
Foundation5
Columns
Vierendeel Frame
Lateral System7
Floor System10
Gravity Loads
Design Codes and References12
Deflection Criteria12
Fire Protection
EXISTING FLOOR FRAMING SYSTEM14
ALTERNATIVE FLOOR SYSTEMS16
Composite Castellated Steel Beams17
Two-Way Flat Plate19
Two-Way Post-Tensioned Slab w/ Slab Bands21
SYSTEM COMPARISON
CONCLUSION
APPENDIX A – Typical Framing Plan
APPENDIX B – Existing Composite Steel Beam
APPENDIX C – Composite Castellated Steel Beams
APPENDIX D – Two-Way Flat Plate
APPENDIX E - Two-Way Post-Tensioned Slab w/ Slab Bands

The New York Times Building New York, NY Technical Report #2

EXECUTIVE SUMMARY

In the second technical report of the New York Times Building, an evaluation of alternative floor systems was conducted using a typical 40'-0"x30'-0"exterior bay in the tower. In all, the design feasibility of four systems, including the existing composite steel beam system, were investigated. The system comparison was based upon but was not limited to: system weight, fire rating, vibration susceptibility, cost, structural depth, constructability, and architectural affects. Three alternative systems which were schematically designed and compared to the existing included:

- Castellated Composite Steel Beam
- Two-Way Flat Plate
- Two-Way Post-Tensioned Slab w/ Slab Bands

The composite castellated beam design was conducted in order to compare the existing composite beam system to another viable steel design solution. The schematic design resulted in the only system lighter that the existing floor structure of the New York Times Building. Being a proprietary system, a program provided by CMC Steel Products was utilized to perform the design calculations. The design resulted in 20.65" deep beams built-up from W14x22s and W14x26s and 18.07" deep girders built-up from W12x14s and W12x19s. Though this schematic design resulted in deeper members than the existing system, the overall plenum height is likely to be less than the existing composite beam system. This is due to other trades being able to utilize the opening in the castellated member. The composite castellated steel system was found to be viable design alternative and will be investigated further.

The schematic design of a two-way flat plate system resulted in a 14" slab which created greatest self weight of all four systems. The system was found to be very inefficient and uneconomical for the large bay size which is required as part of the architecture of the building. Due to this requirement, intermediate columns cannot be added in order to reduce the system span length. Therefore, the two-way flat plate system was not found to be a viable alternative to the existing floor framing system and will not be investigated further.

The two-way post-tensioned slab system with wide-shallow-beams was investigated due to the long span capabilities. The schematic design resulted in 33 tendons distributed uniformly through an 8" slab and 31 bonded tendons through the 16"x48" slab-beam section. Though the concrete system results in a higher system self weight than with the existing steel solution, the two-way post-tension system was determined to be a feasible floor design alternative based upon long span capabilities and a thin slab thickness. Therefore, the two-way post-tensioned slab with wide-shallow-beams will be investigated further.

The New York Times Building New York, NY Technical Report #2

INTRODUCTION

The New York Times Headquarters Building (NYTB) is home to the New York Times newsroom and offices, as well as several law firms, whose offices are leased through Forest City Ratner. In collaboration with FXFOWLE Architects, the intent of the Renzo Piano Workshop was to introduce a flagship structure which promoted sustainability, lightness, and transparency. The architectural façade reflects the ever-changing environment surrounding the building, an appropriate acknowledgement of the heart of New York City.

Figure 1: New York Times Building Location (Google Maps)

The 52 story, 1,500,000 square foot building rises 744 feet above Eighth Avenue between 40th and 41st Street creating a 200' x 400' footprint. The tower's 300 foot mast allows for the structure to top out at 1048 feet above ground level. The New York Times occupies the entire five-story podium of the structure, and the first 27 levels in the tower. The additional levels are the office spaces leased through Forest City Ratner. Story heights average approximately 13 feet 9 inches in the tower, lending a great view to the open office plans. At the mechanical floors on levels 28 and 51, however, the floor height is approximately 27 feet to accommodate equipment and two-story steel outriggers which link the perimeter columns to the braced framed core.

Structural System Description

Foundation

The foundation of the NYTB combines typical spread footings with caissons to achieve its maximum axial capacity. Below the building's 16-foot cellar, the tower and podium mostly bear on Medium/Hard rock with a bearing capacity of 80 ksf., Class 2-65 per the New York City Building Code. However, a core sample taken just before finalizing the site investigation report indicated that rock at the southeast corner of the tower only had a 16 ksf bearing capacity, Class 4-65. At the seven columns that fall within this area, indicated in red on Figure 2, 24-inch diameter concrete-filled steel caissons were used to replace the original foundation designs. Each caisson was designed to support a load of 2,400 kips with 6,000 psi concrete.

Under the other 21 columns (indicated on Figure 2 in teal), spread footings with a compressive strength of 6,000 psi are used to support the loads. The areas depicted in blue represent the two cantilevered sections of the tower. The columns which fall in these areas do not directly transfer load to the ground which removes the need for footings at these locations.

Columns

The 30" by 30" box columns (Figure 3) at the exterior notches of the tower consist of two 30 inch long flange plates and two web plates inset 3 inches from the exterior of the column on either side. Each web plate decreases in thickness from 7 inches as the column extends up the structure to account for the reduction in axial loads. Each flange plate decreases from 4 inches in thickness to relate to the architectural vision of the tower. Although the yield strength of the plates also varies with tower height, the strength was assumed to be a uniform 50 ksi for calculations. Interior columns are a combination of built-up sections and rolled shapes. Column locations stay consistent throughout the height of the building, and every column is engaged in the lateral system. Please refer to Figure 4 to view the column locations. Note that the unfilled boxes denote columns in the cantilevered area which do not extend to the ground.

Figure 3: Box Column as Modeled in Revit Structure

Vierendeel Frame

A Vierendeel frame was used by Thornton Tomasetti as a combined solution at the 20 foot cantilever sections of the tower. Renzo Piano did not want columns obstructing the glass storefronts at the ground level, so these sections were cantilevered from the main structure. As a unique way to control deflections in the middle beams of the cantilevered section, the ladder-like moment frame engages all floors throughout the entire height of the tower. It connects to 28th and 52nd floor outriggers through the use of diagonal braces which effectively transfer loads from the frame to the core of the tower. Refer to Figure 9 on page 9 to view the brace location.

Lateral System

The main lateral load resisting system for the tower of the NYTB consists of a centralized steel braced frame core with outriggers on the two mechanical floors (Levels 28 and 51). The structural core consists of a combination of concentric and eccentric bracing which surrounds elevator shafts, MEP shafts, and stair wells. At this time, the member sizes of these braces have yet to be disclosed. The core configuration remains consistent from the ground level to the 27th floor as shown in Figure 5. But above the 28th floor, the low rise elevators were no longer required. In order to optimize the rentable space on the upper levels of the tower, the number of bracing lines in the North-South direction were reduced from two to one (Figure 6). Please refer to Figures 7 and 8 to view the typical core bracing configurations.

The outriggers on the mechanical floors consist of chevron braces (Figure 10) and single diagonal braces. The outrigger system was designed to increase the efficiency and redundancy of the tower by engaging the perimeter columns into the lateral system. Please refer to page 9 to view the framing plans and bracing elevations of the outrigger system.

Figure 6: Typical Lateral System (Floors 29-50)

Single Diagonal Bracing Pre-Tensioned Steel Rod X-Bracing Chevron & Eccentric Bracing

Figure 8: Typical Core E/W Core Bracing Elevation

During the design of the tower, the engineers at Thornton Tomasetti sized the members of the main lateral force resisting system merely for strength. In order to increase stiffness and meet deflection criterion, the structural engineers utilized the double story steel rod X-braces (original to Renzo Piano's exterior design) instead of increasing the member sizes of the main lateral force resisting system. These X-braces can be located on Figures 5 and 6 on the previous page. The high strength steel rods transition from 2.5" to 4" in diameter and were prestressed to 210 kips. This induced tensile load prevents the need for large compression members which would not conform to the architectural vision of the exterior.

Although the X-braces did reduce the need for an overall member size increase, the lateral system still did not completely conform to the deflection criterion. Therefore, some of the 30" by 30" base columns were designed as built-up solid sections which reduced the building drift caused by the building overturning moment. After combining these solid base columns and the X-braces with the main lateral force resisting system, the calculated deflection of the tower due to wind was L/450 with a 10 year return period and a building acceleration of less than 0.025g for non-hurricane winds.

Figure 11: Typical N/S Outrigger Section (28th Floor)

Floor System

The existing floor structure of the NYTB is comprised of a composite steel beam system with typical bay dimensions of 30'-0"x40'-0". These rectangular bays are configured into a cruciform shape around the perimeter of the core. This composite system was selected to reduce the self weight of the structural system which greatly affects member sizes in high rise buildings. By reducing member sizes, the structural system was able to conform to "transparency" desired by the architectural design. A more in depth discussion of existing floor framing system is presented later within the content of this report.

The remaining report evaluates and compares the existing composite beam floor system with three possible alternative floor systems. Please note that the designs with in this report are considered to merely be preliminary schematic designs used to determine the viability of each system. Those found to be feasible, have been noted and will taken into consideration for the expansion project proposal. Such items to be investigated are: system weight, fire rating, vibration susceptibility, cost, structural depth, constructability, architectural affects, and structural affects. In order to perform a proper comparison, all for systems were designed and evaluated using a typical perimeter bay, as shown in Figure 12 on the following page.

Gravity Loads

The gravity loads of the NYTB were the loads considered when designing the floor systems for comparison. The dead loads used for the evaluation were the calculated floor system self weights and the typical superimposed dead load of 25 psf. Also, the majority of the floor space within the tower, including the floor panel of interest, is allocated for office use. Therefore, the live load used in this comparison was 50 psf plus 20 psf for partitions. Also, please note that live loads were not reduced in order to be conservative.

Plan Not Disclosed Upon Owner's Request

Figure 12: Typical 40'-0"x30'-0" Exterior Bay

Design Codes and References

2006 International Building Code AISC - LRFD,

AISC – LRFD, Steel Construction Manual 13th edition, American Institute of Steel Construction

ACI 318 – 08, Building Code Requirements for Structural Concrete, American Concrete Institute

ASCE 7-05, Minimum Design Loads for Buildings and other Structures

PCA Time Saving Design Aids, Two-Way Post-Tensioned Design, Portland Cement Association

Aalami, B. O., (1993) "One-Way and Two-Way Post-Tensioned Floor Systems," PTI Technical Notes, Post-Tensioning Institute, Phoenix, AZ, Issue 3, October 1993.

Aalami, B. O., (2001) "Nonprestressed Bonded Reinforcement in Post-Tensioned Building Design," ADAPT Technical Publication, Redwood City, CA, Issue P2-01, February 2001.

Vulcraft Steel Roof & Floor Deck Catalog, Nucor - Vulcraft Group, 2008

Floor Vibration Testing and Analysis of SMARTBEAM FLOORS, Conducted by Structural Engineers, Inc. for the CMC Steel Group, October 2000.

Boyer, J. P. (1964), "Castellated Beams – New Developments," AISC Engineering Journal, July 1964.

Nilson, A. H., Darwin, D., Dolan, C. W., (2004) "Design of Concrete Structures, Thirteenth Edition," McGraw-Hill, New York, NY, 2004.

Deflection Criteria

Construction Dead Load deflection limitation for beams and girders – L/240

Live Load deflection limitation for beams and girders – L/360

Full Service Load deflection limitation for beams and girders -L/240

Concrete Systems to comply with provisions of ACI 318-08 Section 9.5.

Fire Protection

According to the 2006 IBC, the NYTB, based upon its building height and area, is classified as a Type 1A building. Floor construction, including supporting beams and joist, for this building type is required to meet a fire resistance rating of 2 hours. The following table shows the required clear cover in concrete slab systems in order to achieve this 2 hour rating.

STRUCTURAL PARTS	ITEM		MINIM MA FIRE-	IUM THICKN TERIAL FOF RESISTANC	NESS OF INSU R THE FOLLO CE PERIODS (JLATING WING inches)
TO BE PROTECTED	NUMBER	INSULATING MATERIAL USED	4 hour	3 hour	2 hour	1 hour
3. Bonded pretensioned reinforcement in prestressed concrete ^e	3-1.1	Carbonate, lightweight, sand-lightweight and siliceous ^r aggregate concrete Beams or girders Solid slabs'	49	39 2	2% 1%	1½ 1
4. Bonded or unbonded	4-1.1	Carbonate, lightweight, sand-lightweight and siliceous' aggregate concrete Unrestrained members: Solid slabs ¹ Beams and girders ¹ 8″ wide greater than 12″ wide	- 3	2 4½ 2½	1% 2% 2	 1¾ 1½
post-tensioned tendons in prestressed concrete ^{e, 1}	4-1.2	Carbonate, lightweight, sand-lightweight and siliceous aggregate Restrained members.* Solid slabs ¹ Beams and girders ¹ 8″ wide greater than 12″ wide	1¼ 2½ 2	1 2 1¾	34 134 134	_
7. Reinforcing and tie rods in floor and roof slabs ⁱ	7-1.1 7-1.2	Carbonate, lightweight and sand-lightweight aggregate concrete. Siliceous aggregate concrete.	1 1 ¹ / ₄	1	3/ 1	3) 3) 3)

The structural steel within the floor systems must conform to the 2 hour fire rating as well. This rating can be reached through the application of spray on fire proofing, intumescent paint, or by enclosing structural members with in gypsum wall board. Please note that these fire protection systems were not analyzed for this evaluation.

EXISTING FLOOR FRAMING SYSTEM

Material Properties

Concrete:	5.5" slab (2.5" topping)	Self Weight:	59 psf
	$f_{c}^{2} = 4000 \text{ psi}$	Live:	70 psf
Steel:	$f_v = 50,000 \text{ psi}$	Superimposed:	25 psf
Reinforcement:	$f_v = 60,000 \text{ psi}$		
Metal Deck:	3 VLI 22 – 3 span		

Loading

Description

As mentioned previously, the structural engineers of the New York Times Building implemented a composite beam system (Figure 13) into the design of the floor framing structure. The typical bay size is 30'-0"x 40'-0" with 2 ½" normal weight concrete and 3" metal deck, typically spanning 10'-0" from W12x19 to W18x35 infill beams. These infill beams frame into W18x40 girders which in turn, transfer the floor loads to the various build-up columns throughout the structure.

The design verification calculations were conducted using the Vulcraft Steel Roof and Floor Deck Catalog as well as the AISC Steel Construction Manual. After

Figure 13: Typical Composite Beam Construction (Farlex)

conducting an analysis of the exterior floor panel of interest, it was found that the existing floor framing system is adequately designed to carry the applied gravity loads. To view the calculations supporting this analysis, please refer to Appendix B.

Advantages

This system has several advantages the first being speed of erection. By implementing the use of metal decking with a max unshored clear span of $10^{\circ} - 11^{\circ}$, no formwork nor shoring is needed during the construction process. This cuts back on erection time and reduces cost associated with construction labor. In addition, a steel system is fairly light weight in comparison to concrete. Also by taking advantage of a composited beam system, the member sizes are reduced from that of a non-composite system. This reduction in gravity loading is very advantageous to high rise design because it essentially reduces the loads of other gravity members, in particularly columns and foundations. But a low self weight is particularly beneficial when considering the cantilevered ends of the NYTB. The system allows for less self weight to be transferred back into

the structure. In addition, the system allows for the versatility in the design of other building systems through the service plenum which will be created by a drop ceiling.

Disadvantages

Even though the system does reduce member sizes by taking advantage of composite beam construction, the system still results in a fairly deep floor system. In addition to the 5 ½" slab, the W18X40 girders add an additional 17.9" which totals to a 23.4" system depth. Also, steel beams and girders do not have inherent fire protection properties. This initiates the need for external fire protection, such as spray-on fire proofing or intumecent paint, in order to meet the required 2 hour fire rating. A steel system also presents the issue of longer lead ties in construction.

Feasibility

This floor system was found to be an excellent and efficient design for the New York Times Building. Due to the advantages of the light weight system along with the ease of construction the system will remain a viable solution for the floor system.

The New York Times Building New York, NY Technical Report #2

ALTERNATIVE FLOOR SYSTEMS

Figure 14: Typical 30'-0" x 40'-0" exterior bay used for alternative floor system designs

Figure 14 highlights the typical exterior panel used to design three alternative floor systems. The following were selected on the bases of finding alternative floor design solutions which can possibly be investigated further as part of the thesis proposal:

- Composite Castellated Steel Beams
- Two-Way Reinforced Concrete Flat Plate
- Two-Way Post-Tensioned Concrete Slab w/ Slab Bands

Composite Castellated Steel Beams

Material Properties

Concrete:	5.5" slab (2.5" topping)
	f [°] _c = 4000 psi
Steel:	$f_v = 50,000 \text{ psi}$
Reinforcement:	$f_v = 60,000 \text{ psi}$
Metal Deck:	3 VLI 22 – 3 span

Loading

Self Weight:	56 psf
Live:	70 psf
Superimposed:	25 psf

Description

The composite castellated beam system (Figure 15) was designed using the typical bay size of 30'-0" x 40'-0". The same composite deck (5 $\frac{1}{2}$ " slab with 3 VLI 22 metal deck) and beam spacing (10'-0") was used in order to yield the most comparable results to the existing composite beam system.

According to AISC, castellated beams and girders are proprietary and need to be designed using criterion established by the manufacture. Therefore, this schematic design was conducted the aid of a design program provided by CMC Steel Products. The calculations revealed that the lightest weight sections to be used were 20.65" beams built-up from W14x22s and W14x26s and 18.07" girders built-up from W12x14s and W12x19s. To review the calculations for this preliminary design, please see Appendix C.

Figure 15: Exposed Castellated Beam Construction (DJC.com)

Advantages

A composite castellated steel beam system has numerous benefits. Castellated beams can span greater distances than the conventional wide flange members with less steel creating a very efficient system. Also, by implementing a composite design as well as less steel being required, the castellated composite beam system proved to be the overall lightest floor framing system at 56 psf. As stated for the existing design, a smaller gravity loading is very advantageous to high rise design because it essentially reduces the loads of other gravity members. This is particularly advantageous for the cantilevered areas in the NYTB which require gravity loads to be transferred back to the interior structure. Although a castellated beam system does have a greater structural depth than when compared to a conventional wide flange system, other trades such as mechanical systems can be passed through the openings in the steel members which could possibly reduce the overall floor plenum height. Investigation conducted for CMC Steel Products also reviled that castellated beams are very good handling serviceability issues due to vibrations.

Disadvantages

As with the conventional composite beam system, the castellated steel members must be fire proofed in order to achieve the required 2 hour fire rating. Also when adding the slab thickness beam depth, the floor system introduces the largest over all structural depth of 26.1". This increase would require an increase in plenum space if the other trades are unable to utilize the openings in the castellated members. Thickening the plenum cannot be afforded in the NYTB due to the architectural impacts of decreasing the floor to ceiling heights. Also, castellated beams are proprietary which can be considered as a constraint in the design process. Lastly, castellated steel beams have a long lead time associated with them.

Feasibility

A castellated composite beam system is a very efficient floor system which is a viable alternative to the existing floor system of the New York Times Building. If no major architectural impacts are present after collaboration with the other disciplines of the BIM Thesis Team, a castellated composite floor system could be considered as option for the building proposal study.

Two-Way Flat Plate

Material Properties

Concrete:	14" slab (NWC)
	f' _c = 5000 psi
Reinforcement:	f _v = 60,000 psi
Column Sizes:	30"x30"

Description

A two- way flat plate system (Figure 16) was designed for this evaluation using the typical exterior bay size of 30'-0" x 40'-0". The first step in the schematic design of this system was to determine the slab thickness required in order comply with deflection limitations provided by ACI 318-08 section 9.5. It was determined that a 14" slab was required to conform to these limitations.

Loading

Self Weight:	175 psf
Live:	70 psf
Superimposed:	25 psf

Figure 16: Two-Way Flat Plate (CRIS.org)

Though it was assumed that a flat plate designed with such a large bay would result in an inefficient, uneconomical floor system, the design was continued with the larger spans due to negative architectural affects that would result through the addition of intermediate columns. The system was schematically designed using the Direct Design Method found in ACI 318-08 section 13.6. To review the calculations and results for this preliminary design, please see Appendix D.

Advantages

The implementation of a two-way flat plate system as the floor design for the NYTB would have a few advantages. First of all, if the adequate clear cover is implemented into the design of the slab, a 2 hour fire rating can be achieved with in the floor system itself meaning no fire proofing is required. Also, in this particular design produced the thinnest overall floor structure of 14". This increase in the plenum space allows for the other trades to have the greatest flexibility for their designs. The use of a flat plate floor system is also advantageous for construction due to the shorter lead times associated with a concrete system. Lastly the mere mass of this two-way flat plate system makes it the least susceptible to vibration issues.

Disadvantages

Many disadvantages are associated with this two-way flat plate system. First off, the high self weight of 175 psf will affect the gravity and foundation systems the 62 story structure immensely. This self weight could be reduced through the addition of intermediate columns. But as mentioned previously, the addition of columns will negatively affect the New York Times Building's current architecture which utilizes the open area produced by the 40'-0"x30'-0" exterior

bays. Using a flat plate system for the NYTB will require an entire redesign of the gravity system and lateral system from steel to concrete as well. Also, the additional weight of the system when designed with the existing column configuration produces the highest material cost of 31.5 dollars per square foot which is almost double the cost associated with the other alternative concrete system. Lastly, implementing a two-way flat plate system introduces the need for formwork and shoring. This presents the issue of an increase in labor cost and longer erection times.

Feasibility

Due to the increase in self weight and cost, a two-way flat plate floor system would be inefficient and uneconomical design solution for the New York Times Building. Also, the reduction of span length is not an option due to an architectural design constraint. After this evaluation, it is suggested that no further investigation be performed on this system.

Two-Way Post-Tensioned Slab w/ Slab Bands

Material Properties

Concrete:	8" slab w/ 14" drop panels
	16" Slab Beam
	f' _c = 5000 psi
	f [•] _{ci} = 3000 psi
Tendons:	Unbonded Tendons
	¹ /2" dia.7-Wire Strand
	f _{pu} = 270,000 psi
Reinforcement:	$f_v = 60,000 \text{ psi}$
Column Sizes:	30"x30"

Loading

Self Weight:	113 psf
Live:	70 psf
Superimposed:	25 psf

Description

The third floor system to be evaluated as a possible alternative to the existing was a two-way post- tensioned concrete slab system (Figure 17). To create a comparable result, the system was designed using the typical exterior bay size of 30'-0" x 40'-0". In order to produce an efficient slab design while maintaining the existing column layout, a slab beam or wide shallow beam was utilized for the 40' span. This enabled the slab thickness to be determined using the shorter 30' span.

Figure 17: Two-Way PT Floor System (concreteconstruction.net)

This schematic design resulted in the slab thickness of 8" with (33) tendons uniformly distributed spanning the short direction and (31) tendons banded with in each wide-shallow-beam. Based upon technical information obtained from the Post-Tensioning Institute, the geometry of the slab beam was designed with a 48" width and 16" overall height. Minimum bonded reinforcement was also determined based upon the strength requirement of the floor system. Also, please note that the wide-shallow-beam was not used when checking punching shear. Although this assumption is unfeasible, it was made in order to be conservative for this schematic design. The 8" slab alone was unable to comply with the punching shear requirements. Therefore, 14" drop panels were required for the floor system. This assumption will have to be readdressed if further investigation of this system occurs. Please refer to Appendix E to review the schematic design and calculations for the two-way post-tensioned concrete floor system.

Advantages

A two-way post-tension concrete slab system was found to have many advantages associated with it. When a wide-shallow-beam is designed as part of the two-way slab, the system becomes very efficient at spanning long distances. Therefore, the architecture of the exterior bays in the NYTB would not change significantly if this system was implemented. Also, the thinner slab

allows for more versatility and space in the plenum when compared to the existing floor system. As with the other concrete system, fire ratings are determined by clear cover in the concrete which removes the need for additional fire proofing. Also, the system does provide dampening to vibration affects.

Disadvantages

There are some disadvantages associated with a two-way post-tensioned system. Even though the material cost of the system is the lowest overall at 16.3 dollars per square foot, the cost associated to labor and construction is very high. Of all the four systems, the two-way flat plate is the most complex and labor intensive requiring the use of specialty trades. The system also has a slow erection time, not only due to forming and shoring, but due to the jacking process as well. Lastly being a concrete system, the gravity as well as the lateral system of the New York Times Building would have to be redesigned as concrete systems if selected to be investigated further.

Feasibility

The two-way post-tensioned slab with wide-shallow-beams is a very efficient floor system which should be considered as a viable alternative to the existing floor system of the New York Times Building. Though some disadvantages in terms of complexity are present, the system should still be considered feasible. If no major concerns are issued after collaboration with the other members of the BIM Thesis Team, a two-way post-tensioned slab system could be considered as option for the building proposal study.

SYSTEM COMPARISON

	Floor System Comparison - Typical Exterior Bay								
Criterion	Composite Steel Beam System (Existing)	Composite Castellated Steel Beam System	Two-Way Flat Plate	Two-Way PT Slab w/ Slab Beams					
System Self Weight (psf)	59	56	175	113					
Slab Depth (in)	5.5	5.5	14	8					
Total Floor System Depth (in)	23.4	26.1	14	16					
Constructability	Easy	Easy	Medium	Hard					
Formwork Required	No	No	Yes	Yes					
Lead Time	Long	Long	Short	Short					
Gravity System Impact	N/A	No	Major	Yes					
Lateral System Impact	N/A	No	Yes	Yes					
Architectural Impact	N/A	Possible	Major	No					
Vibration Control	Average	Above Average	Excellent	Above Average					
Fire Rating (hr)	2	2	2	2					
Fire Protection Required	Yes	Yes	No	No					
System Cost (\$/sf)*	28.7	27.3	31.5	16.3					
Feasible	Yes	Yes	No	Yes					
Additional Investigation	N/A	Yes	No	Yes					

* System costs were determined using Cost Works by RSMeans. The prices shown here are only costs associated to materials. Labor was not a factor when calculating these values.

The New York Times Building New York, NY Technical Report #2

CONCLUSION

For the second technical report on the structural system of the New York Times Building, an evaluation was performed between the existing floor system and three alternatives. These alternatives were schematically designed using a typical 40'-0"x30'-0" bay on the exterior perimeter of the tower. During the evaluation, two criteria emerged as the main factors in determining the feasibility of the floors systems. System self weight, being the first factor, has an extreme effect high rise structures. A small increase in the self weight of a floor panel can translate into a large increase in the overall building weight. The second factor was that of architectural affects. The architectural design of New York Times Building tries to conform to the idea of structural transparency through the use of long spans which provide open areas and spaces.

After evaluating all the systems, two of the designs were found to be feasible as alternative designs for the New York Times Building. The first feasible alternative was the composite castellated steel beam system. Of all the systems, it was the only one to have a smaller self weight that the existing floor structure. Though the system would increase the overall floor structure thickness, the architectural effects could be negated if the other disciplines are able to utilize the openings in the castellated members which would reduce the overall floor plenum.

The second alternative would be the two-way post-tensioned concrete slab with wideshallow-beams. Though the systems has a greater self weight than that of the existing system, its ability to span long distances, while still maintaining a small structural depth, allows for open areas and spaces as desired by the architect. However, it must be considered that this will require that the entire structural gravity and lateral systems must be redesigned as concrete systems.

A two-way flat plate system was schematically designed for the third comparison. It was determined that this system should disregarded as an alternative floor system design. This is due to the system's inability to span large distances without creating a heavy, inefficient design. System could have been considered as an alternative if more column lines were added throughout the structure. However, this would have not conformed to the architectural desire to have large open bays.

The New York Times Building New York, NY Technical Report #2

APPENDIX A – Typical Framing Plan

Plan Not Disclosed Upon Owner's Request

APPENDIX B - Existing Composite Steel Beam

After consulting the structural engineer and the general structural design criteria, it was determined that the metal decking for the existing $5 \frac{1}{2}$ " composite slab was required to be 3" in depth, have a minimum yield strength of 40 ksi, and minimum thickness of 20 gage. The following is a table obtained from Vulcraft to find the permissible unshored clear span and superimposed live load of a typical metal deck type which would conform to this criterion.

TOTAL		SD	SDI Max. Unshored							Su	iperimpo	sed Live	Load, P	SF					
SLAB	DECK		Clear Span								Clea	r Span (f	tin.)						
DEPTH	TYPE	1 SPAN	2 SPAN	3 SPAN	7'-0	7'-6	8'-0	8' - 6	9'-0	9'-6	10'-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	13'-6	14'-0
	3VL I 22	9'-2	10'-7	11'-8	216	195	176	161	148	109	99	90	83	76	70	64	59	54	50
5.00	3VL120	10'-8	12'-11	13'-4	241	216	196	178	163	150	139	129	93	85	78	72	66	61	57
(t=2.00)	3VL I 19	12'-0	14'-4	14'-7	265	237	214	194	178	163	151	140	131	122	115	79	73	67	62
45 PSF	3VL I 18	12'-10	15'-1	15'-1	289	261	238	218	201	186	173	161	151	142	134	127	92	86	80
	3VL I 16	13'-5	15'-7	15'-11	327	294	267	243	223	206	191	178	167	156	147	139	132	96	89
	3VL 22	8'-9	9'-8	10'-11	247	222	201	184	137	124	113	103	94	87	80	73	67	62	57
5.50	3VL I 20	10'-1	12'-4	12'-9	275	247	223	203	186	171	159	116	106	97	89	82	76	70	65
(t=2.50)	3VL I 19	11'-4	13'-8	14'-2	302	270	244	222	203	186	172	160	149	107	98	90	83	77	71
51 PSF	3VL I 18	12'-5	14'-7	14'-7	330	298	271	248	229	212	197	184	173	162	153	112	105	98	92
	3VL116	12'-9	14'-11	15'-5	373	335	304	277	255	235	218	203	190	178	168	159	117	109	102

(N=9.35) NORMAL WEIGHT CONCRETE (145 PCF)

The following is the framing plan for the floor panel of interest as designed by the structural engineer. Please note that the design shown on the following pages resulted in a different number of shear studs than depicted here in Figure 18. This difference was assumed to be minor and negligible for this report.

Figure 18: Existing Framing Plan

Check Matel Decking_ From Structures Design Criteria: + 2 1/2 " H. W. Cone, SLAB + 3" Decking + 40 KSE TIELD No. 937 811E Engineer's Computation Pad + Min. 20 gage FROM VULCRAFT (3VLI, 145 PCF CONC.) MAX. UNSHORED CLEAR SPAN. 5 1/2" SLAS & 10'-11" = 10.92" 3 SPAN **STAEDTLER** MAX CLEAK SPAN BETWEEN BEAMS (USE WIBYSS) \$ to \$ = 10' -0" 10, - 12 = 9.5 YOL TEY 3VL122 Check Superimposed Live LUND Span= 19'-6" } 124 pof Typical FLR LOADING LE 70 pr f (OFFICE LONDING) SDL = 25 psf TOTAL Service LD = 95 psf rok 456 BVL122 (VULCEAFT)

q	$\frac{BEAM CHECK}{}$ $Tris WIDTH = 10'-0''$ $\frac{1}{40'}$
937 811E neer's Computation Pa	W $Swal = S2 psf(10') = S20 plf (SLA6)$ $Sol = 25 psf(10') = 250 plf (SUPERLIMPOSED)$ $LL = 70 psf(10') = 700 plf$ Frances Lords
 No. 9 Engir 	$-w_{c} = 1.2(0.52 \pm 0.25) \pm 1.6(0.7) = 2.04 \text{ kLF}$
IAEDTLER	$\frac{\text{Design}}{M_{v}} = \frac{(2.04)(40)^{2}}{9} = 408' \text{K}$
€ S (}	Vu = (2.04)(2)= 40.8 K
	Assure: $a = 1''$ $T = 5'/_{0} - \frac{1}{2}'' = 5''$
	$\frac{12}{12} + \frac{3}{12} + \frac{2}{2} = \frac{3}{12}$ $\frac{12}{12} + \frac{2}{12} + \frac{3}{12} + \frac{3}{12}$
	$\frac{beff}{S=9'} \leftarrow C_{0} + T_{COLS} \qquad \Sigma Q_{n} = 260 k$ $\frac{L}{4} = \frac{40}{4} = 10'$
	$q = \frac{ZQn}{0.55f'c beff} = \frac{260}{(0.55)(4)(9\times12)} = 0.71'' \angle 1'' - \frac{0c}{0c}$
	SHEAR STUDS
	ZQh = 260k # STUDS = $Z60k$ = 16 STUDS x2 = 32 STUDS
	17. 2 K/STUD

TOTAL A (ASEA) $\Delta = \frac{5 - \omega - 1}{384 \text{ EI}}^{4} = \frac{5(1.47)(40)^{4}(1728)}{384(2900)(1170)} = 2.5''$ ILB= 1170,4 No. 937 811E Engineer's Computation Pad $\frac{1}{240} = \frac{(40)(12)}{240} = 2'' \leq \Delta = 2.5$ However, Designed W/ 11/2" CAMBER: \$= 2.5-1.5= 1/2" (22") Construction A (A 5 240) I=510in **STAEDTLER** $\Delta = \frac{(5)(0.52)(40)^{4}(1726)}{384(2900)(50)} = 2.03''$ 240 + 11/2" CAMBER = 3.5"> & Jok LLA ($A \leq 360$) $I_{18} = 117014$ $\Delta = (5)(0,7)(40)^{4}(1728) - 1.18'' = \frac{1}{404} - \frac{1}{360} - \frac{1}{018}$ OMn = 435'K > 408'K /oK OUN = 159 K 7 40. BK /or USE W18×35 [32] C=1 1/2"

GIRDER CHECK P. TKIB WINTH = 10 10'-0" 10'-0 10 No. 937 811E Engineer's Computation Pad 30 P CPL= 0.85 × 20 + 0.019 ×5 = 13,8 × 052 × 25 + 0.25 × 25 = 6.34 SPL = 0.7 × 25 = 17,5K LL -FACTORED LOAD **STAEDTLER**° R= 1.2(13,8+ 6,3) + 1.6(7,5) = 52.124 Devin Mr= Pa = (52.12)(10') = 521.2 'k Vu = 52.12K ACDL (1/240) $\Delta = \frac{pl^3}{28.PI}$ $\frac{(3p)(12)}{240} = \frac{(13,8)(30)^{3}(1728)}{(28)(29000)} \text{ Try}$ Irey = 528.6. 4 T W 18×40 I=612114 SCOL LOK

Assume a=1" T2 = 51/2" - 1"/2 = 5" \$ Am = 536 " 0#4 ZQn = 3511 K beff { 30' = 7.5' = 90" < CONTROLS 9= 351 = 1.14"> 1" - Assumption NG No. 937 811E Engineer's Computation Pad Assume a= 2" T2 = 51/2" - 2"/2 = 41/2" OM= 523" C= 4 a=351 = 1.14" 2" - oc (0.85)(4)(9) **STAEDTLER**° # STUDS ZQ1 = 351 K $\pm STUDS = \frac{3SI^2}{18.3 \pm /STUD} = \frac{20 \times 2}{18.3 \pm /STUD}$ CHECK TOTAL & (b = 1/240) ILB = 1670 1 4 $\Delta = (37, 6)(30)^{3}(1728) = 1,29'' = \frac{1}{279} \leq \frac{1}{240} - \frac{1}{240}$ CHECK LLA (ALP/360) $\Delta = \frac{(17.5)(30)^{3}(1728)}{(2.5)(24000)(1670)} = 0.6 = \frac{1}{578} - \frac{1}{560}$ \$ Mn = 523 12 > 521.212 - OK USE W18×40 [40] DVn = 169 K > 52.12K -OK EXISTING SYSTEM SW CONC & Deck = 52 psf FRAMING = (35 PLF)(40)(4) + (40 PLF)(30)(2) = 6.7 psf (30)(40') SW= 59 pst TOTAL

APPENDIX C – Composite Castellated Steel Beams

According to the AISC Steel Construction Manual, "castellated beams are currently designed and fabricated as a proprietary product" and are designed based on criterion put in place by the manufacture. (AISC, p.2-21) Therefore, a design program provided by CMC Steel Products was used to perform the schematic design of this alternative system.

Several assumptions were made when designing this proprietary system. The design of the composite slab was taken to be the same as that for the existing floor system (please refer to Appendix B). Also, the design program only enables one to design a composite castellated beam with metal deck running perpendicular to the member. Therefore, the design for the edge girder is not entirely correct but is assumed to be within reason for this preliminary design. However, this issue must be addressed if a composite castellated beam system is investigated further as a viable alternative floor system.

CASTELLATED BEAM INFORMATION			LOADING INFORMATION				EXPAND'D. SXN. PROP'S			
Job Name	40 Span Bear	ns		Uniform	Distributed	Loads		Avg. wt.	24.0	plf
Beam Mark #	Beam		Live Load	700	plf	Pre-comp %	0%	Anet	5.376	in^2
Span	40.000	ft	Dead Load	250	plf	Pre-comp %	80%	Agross	8.688	in^2
Spac. Left	10.000	ft		Concen	trated Point	Loads		Ix net	499.73	in^4
Spac. Right	10.000	ft	Load #	Magnitude	Dist from	Percent DL	Percent	lx gross	552.07	in^4
Mat. Strength-Fy	50 🔻	ksi	(#)	(kips)	Lft. End (ft)	(%)	Pre-Comp.	Sx net	44.56	in^3
Round Duct Diam.	11.109	in	P1	0.00	0.00	0%	0%	Sx gross	50.45	in^3
Duct W x H	6.250 in	10.874 in	P2	0.00	0.00	0%	0%	rx min	7.97	in
Castellated Beam	CB21X22/26	-	P3	0.00	0.00	0%	0%	ly	7.95	in^4
Root Beams (T/B)	W14X22	W14X26	P4	0.00	0.00	0%	0%	Sy	3.18	in^3
d	13.74	13.91		COMPOS	ITE INFOR	MATION		COMPOSITE SXN. P		PROP'S
bf	5	5.025	Concrete & Deck:			Shear Studs:		n	7.44	
tf	0.335	0.42	conc. strength - f	c' (psi)	4500 🔻	stud dia. (in)	3/4" 🔻	beffec.	120.00	in
tw	0.23	0.255	conc. wt wc (pc	:f)	150 -	stud ht. (in)	5	Actr	40.315	in^2
CASTELLATION PARAMETERS:			conc. above deck	: - tc (in)	2 1/2	studs per rib	1	N.A. ht.	23.13	In Deck
е	5.500	in	rib height - hr (in)		3	composite %	100% 🔻	Itr	1655.97	in^4
b	4.000	in	rib width - wr (in)		6	Stud Sp	acing:	leffec.	1655.97	in^3
dt	3.500	in				N=22,Unifo	ormly Dist.	Sxconc	548.05	in^3
S	19.000	in	RESULTS			WARNINGS		Sxsteel	71.60	in^3
dg	20.650	in	Failure Mode	Interaction	Status			CONST	RUCTION BF	RIDGING
phi	59.623	deg	Bending	0.989	<=1.0 OK!!			End Conn	ection type	Double clip 🔻
ho	13.650	in	Web Post	0.882	<=1.0 OK!!			Min. No. Of	Bridging Rows	1
wo	13.500	in	Shear	0.819	<=1.0 OK!!			Max. Bridgin	g. Spacing (ft)	31
			Concrete	0.283	<=1.0 OK!!]				
CMC Steel Products			Pre-Comp.	0.409	<=1.0 OK!!					
			Overall	0.989	<=1.0 OK!!	l				
			Pre-Composite D	eflec.	0.904"	=L/531				
			Live Load Deflect	lion	0.840"	=L/572				

CASTELLATED	BEAM INFO	RMATION		LOADIN	G INFORM	ATION		EXPA	ND'D. SXN. P	ROP'S
Job Name	Edge Girder		Uniform Distributed Loads				Avg. wt.	16.5	plf	
Beam Mark #	Girder		Live Load	700	plf	Pre-comp %	0%	Anet	3.550	in^2
Span	30.000	ft	Dead Load	250	plf	Pre-comp %	100%	Agross	6.180	in^2
Spac. Left	5.000	ft		Concen	trated Point	Loads		lx net	245.23	in^4
Spac. Right	20.000	ft	Load #	Magnitude	Dist from	Percent DL	Percent	lx gross	278.92	in^4
Mat. Strength-Fy	50 🔻	ksi	(#)	(kips)	Lft. End (ft)	(%)	Pre-Comp.	Sx net	23.54	in^3
Round Duct Diam.	9.825	in	P1	0.60	10.00	100%	100%	Sx gross	28.08	in^3
Duct W x H	5.500 in	9.631 in	P2	0.60	20.00	100%	100%	rx min	6.72	in
Castellated Beam	CB18X14/19	-	P3	0.00	0.00	0%	0%	ly	3.06	in^4
Root Beams (T/B)	W12X14	W12X19	P4	0.00	0.00	0%	0%	Sy	1.54	in^3
d	11.91	12.16		COMPOS	ITE INFOR	MATION		COMP	OSITE SXN. I	PROP'S
bf	3.97	4.005	Concrete & Dec	k:		Shear Studs:		n	7.44	
tf	0.225	0.35	conc. strength - f	c' (psi)	4500 🔻	stud dia. (in)	1/2" 🔹	beffec.	90.00	in
tw	0.2	0.235	conc. wt wc (po	cf)	150 🔻	stud ht. (in)	5	Actr	30.236	in^2
CASTELLATIO	ON PARAM	ETERS:	conc. above dec	< - tc (in)	2 1/2	studs per rib	1	N.A. ht.	20.79	In Deck
е	5.000	in	rib height - hr (in))	3	composite %	100% 🔻	ltr	944.58	in^4
b	3.500	in	rib width - wr (in)		6	Stud Sp	acing:	leffec.	944.58	in^3
dt	3.000	in				11 10) 11	Sxconc	340.09	in^3
S	17.000	in	F	RESULTS		WARN	INGS	Sxsteel	45.43	in^3
dg	18.070	in	Failure Mode	Interaction	Status			CONST	RUCTION BF	
phi	59.880	deg	Bending	0.918	<=1.0 OK!!			End Conn	ection type	Double clip 🔻
ho	12.070	in	Web Post	0.904	<=1.0 OK!!			Min. No. Of	Bridging Rows	1
wo	12.000	in	Shear	0.850	<=1.0 OK!!			Max. Bridgin	g. Spacing (ft)	26
			Concrete	0.269	<=1.0 OK!!					
(ff))			Pre-Comp.	0.642	<=1.0 OK!!					
			Overall	0.918	<=1.0 OK!!					
GM GM	g Steel Pr	oaucts	Pre-Composite D)eflec.	0.843"	=L/427				
			Live Load Deflec	tion	0.466"	=L/773				

Figure 19: Castellated Beam Framing Plan

CASTELLATED BEAM System SW Conc & Deck = 52 psf Francing = (24 plf)(40)(4) + (16.5 plf)(30)(2) = 4.0 psf (30')(40') SW = 56 psf TOTAL

APPENDIX D – Two-Way Flat Plate

The New York Times Building New York, NY Technical Report #2

	Use Direct Design Method to Glc. Moments
Ő I	Total Factored Static Moment
g	Long Span - France A
ation Pa	Mo = gu /2 ln 2 = (352)(30)(40-25)2 = 1857F+-K
Comput	Eactored Manuer to E 13, 6, 3
937 811 neer's (Ext. Neg1 = 0.26(Mo) = 482.6 K
Engi	Pos? = 0.52(Mo) = 965.3 K INT. Heg. = 0.70 (Mo) = 1299.4 K
TLER	965,31k 482,61k 1299.41k
IAED	
€ SI	
	Short Spen - Frank B
	$M_0 = (352)(40)(30 - 25)^2 = 1331 Ft - k$
-	B Earthread Managents & 13, 4, 3
	New = 0.65 Mb = (0.65)(1331) = B65.21k
	Pos. = 0:35 Mo = (0:35)(1331) = 465.9 k
	465.9 K
	865.Z'K
-	
0	

9	Resign of Slab Rein
	France A
	EXTERIOR
	Description - Mcs - Mms + Mcs + Mms - Mcs - Mms
	Monert -483 0 11,5 525 -578 - 575
B	b 150 150 100 100 100 100 100 100
	Mr= M-1/p -537 0 1082 3b1 -642 -428 0 -09
	R=Mn/12/view 2/6 0 44 145 258 172
	P 0.0037 - 00007 0.0025 0.0049 0.0034 Hilson T. 4-5
8	As=pbd 8,57 - 1.62 5.79 10.2 7.88
	ASMN=0:00226 5:04 5:04 5:04 5:04 5:04 5:04
	N=As/Asbar 194720 11.4712 11.4712 13.274 23.274 1.9718 # 6 BARS
20	$H_{mm} = \frac{1}{2t} \frac{1}{7} $
	Frank B
_	
	Description mas mas these times
-	1 2 40" 2 40" 2 40" 2 40"
	b 240 240 240 240 dall 12,125' 12,125'' 12,125''
	$M_{1} = M_{1}/b$ -721 -237 311 207 $\phi = 0.9$
	R=Mn/622x11.00 245 80 105 70
	P 0.0042 0.0013 0.0018 0.0012 Hilson T A-5
	As=pbd 12.22 3.78 5.24 3.49
	Asmin=0.002 bd 5:182 5:182 5:182 5:182 5:182
	N =45/Abr 27.1925 15:23 14 14 14 14 10 DATE
	2t
	Check dam
-	P = 0.0242 (Nilson T 4-2)
	max - 0.0213 (111)an =/
	dnin = Mu: 12000 p
	$\int \phi p f_{y} b (l - 0.51 p \frac{1-y}{2})$
	/J /+c //
-	Lung Span
	(475 = 12000) (00002 = = 7.7"
	(0.9) (0.0243) (40000 X 180) [(1- 0.59(0.0243) 5000)]
	0 = 12.875 37.7" VOL
	Short SPAN
-	ann = (a 2/ a 2242) (man (200) [(= = = 64 (0, 0243) (60000)]]
	[(0,4)(0,027)((0000)(240))[(1-0)]((0001))((000))]
	d= 12.125 >516" -OL

The New York Times Building New York, NY Technical Report #2

APPENDIX E - Two-Way Post-Tensioned Slab w/ Slab Bands

41 | P a g e

PRESTRESS Force Reguired to BALANCE 7570 of SW -5- 0175 www = 0.75(100)(40) = 3000 plf = 30 k/=+ FORCE NEEDED to Countwart LOAD IN END BAY No. 937 811E Engineer's Computation Pad $P = \frac{\sqrt{5}L^2}{8 a_{ed}} = \frac{(3.0)(20)^2}{8(\frac{3.75}{12})} = 1080K$ Check Precompression Allowance # TENOUR = 1080k = 40.6 -> 454 40 26.6 E/TEN WTO ADJ = 10 64 (3.0) = 2.95 / 4 PAGT = (40) (26.6) = 1064 K **© STAEDTLER**° Pet Actual Precompression growsies PACT = (1064)(1000) = 277 psi 6 700 psi 000 A 3840 > 125psi 000 ack Interior Span Force $P = - \frac{\sqrt{5}}{8} \frac{L^2}{R_{100}^2} = \frac{(3.0)(30)^2}{8(\frac{6}{12})} = 675 \le 1080 \ge 0.000 = 0.000 \ge 0.000 \ge 0.000 = 0.0000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.0$. LESS THAN REQUIRED FOR INT BAYS ADJUST WE (INT.) -5 = 1080 (3.0) = 4.8 K/Ft 675 - = (100 pst) (40) = 400 pit -> 40 E/FE < 408 E/FE - HG

	Prestruis Required to Balance 60% of SW
-	Force Herded to CONTEMPORT LOOP, N ISAY
putation Pac	$P = \frac{1}{25} \frac{12}{2} = \frac{(2.4)(30)^2}{8(3.75)^2} = \frac{964k}{12}$
s Com	Check Precomposition Allowance
Engineer	# TENDON = 864 K = 32, db -> 45E 33 26.6 K/TEND
TLER	$P_{ACT} = (33121.6) = 877.8 k = w_{\overline{b}} ADJ = \frac{877.8}{864} (2.d) = 2.44 k/r_{\overline{c}}$
	DET. ACT. PRE COMP. STRESS
Ø ST/	PAGT = (877, 8) 1000 = 228.4 pi < 300 psi <u>or</u> A 3840 > 125 psi <u>or</u>
	CLECK INTE SPAN EXCE
-+	$P = \frac{1}{8} \frac{L^2}{12} = \frac{(2.4)(30)^2}{8(\frac{6}{12})} = 540 \text{ K} \text{ C} 877.8 \text{ L}$ 8 a int 8 ($\frac{6}{12}$) Less Force Reg. Fore INT: 13475
	LOS-W5 (INT.)
	$w_{b} = \frac{877.8(2.4)}{540} = 3.9 \text{ k/Fe}$
	WD = 4.0 k/F6 > 39 k/26 ->
	EFFECTIVE PRESTRESS FORCE - PROL = 878 K

The New York Times Building New York, NY Technical Report #2

HK	Styre I. ! Struss Immediately ofter Jucking (DL+PAT) (ACI 18, 4, 1) MIDSPEN STRUSSES!
on Pad	$f_{TOP} = (-M_{DL} + M_{RDL}) - \frac{9}{4}$
311E s Computati	$E_{\mu}p_{1}$
 No. 937 8 Engineer' 	$f_{p} = \frac{-336(1+226,2)(1200)}{5120} - 225.6512 pricup$
IEDTLER	fort = (350, 9-230, 2)(12000) - 228.6 = 55 Bt tens 5120
Ø STA	INTERMEDIATE SPANE:
	$f_{op} = \left(\frac{-149.8 + 18.2}{(12000)} - 228.6 = -350 \text{ psi comp}\right)$
	$6.6f'_{ii} > 350 - 22$ $f_{Rot} = (149, 8 - 98.2)(12000) - 228.6 = -108 Bi Curp$
	5.120 0.10fa >108 -or
	CENTER SRAN
	frop = (-204.4 + 134.1)(12000) - 228.6 = -393 psi comp SIZU
	C C C C C C C C C C C C C C C C C C C
	+B0T = (204.4 - (34.1)(12000) - 228.6 = -64 pricemp5:20
	o.bfici>64 vor

STRESSES @ SALVICE (DL+LL+ PT) (18, 13 \$ 184.2) STAGE 2 ! MIDSPAN for= (Moi - Mu + MAL) - P No. 937 811E Engineer's Computation Pad frot = (MoL +ML - MALL) - P END SPAN -frop = (-350.9 -196.5+250.2)(1200) - 228.6 = 972 psi Comp (5120) 0.45 f'L > 972 Jon **STAEDTLER** fror = (350.9 + 196.5 - 250.2) (1200) - 226.6 = 515 ps tons 5120 6 Fri < 5K . . REN. REQ. INTERMADIATE SPAN fron = (-149. 8- 83.9 +98.2)(12000) - 228.6 = 546 psi comp 5120 0.45 fr 2 546 -0K fron = (141.5 + 83.9 -98.2)(12000) - 228.6 = 89 13 taus. 5120 6) fic > 89 you CENTER SPANS fror = (-204.4 - 114 +134.1)(12000) - 228.6 = -661 psi comp ordefte > 661 -ail four (204.4 +114 -134.1) (12000) - 228.6 = 203 psiter. 6FE > 203 -02

Support Stresses for = Mart Mu - MEAL - P/A frot = -MOL-MLL +MBAL - P/A No. 937 811E Engineer's Computation Pad 157 frop = (472,7 + 260.7 - 310)(12000) - 258.6 = 773 psi TEN. 5120 6 IT'L < 773 ... REN. Reg. for = (-472.7-264.7+>10 ×1200) - 288.6 = -1230 ps cup 5120 **STAEDTLER** 0.45fic> 1230 -OL 2nd for = (355.6 + 199.1 - 233.3)(12000) - 288.6 = 525 psi Ton 5120 blac 4 525 . Rein Rey. $f_{B0T} = (-355.6 - 199.1 + 233.3)(12000) - 288.6 = -935 psi comp$ 51200.45 fc 7935 mor

LISTAMATE STRENETH ! LOOK @ PANEL OF INTREST ONLY (CENTER) OLC. PRIMARY PT MOM. M. = PE e @ Supports => e= 3" (NA OF TENDONS) No. 937 811E Engineer's Computation Pad $M_{1} = (\frac{878}{12})(3) = 219,5'k$ CALC. Secondary PT Moments MSEC = MBAL - M, Supports on EITHER SIDE OF CENTER PANEL Msec = 233.3 - 219.5 = 13.8 -> 14 1/2 **STAEDTLER**° LODD COMDIMATIONS MU = 1.2 MpL + 1.6MLL + 1.0 MSEL @ Support $M_{v} = 1, 2(-356) + 1.6(-199) + 14 = -732'k$ @ Min SYLA Mu= 1,2(204.4) + 1,6(114) + 14 = 441,7 1k DETERMINE MIN BONDRO REIN. OF CENTRE PANEL PosiTive Mon. ft = 203 pit > 2)ft = 141 pi - . Rein REG. MIN Pos Rein Rep $y = f_{t}$ h = (203)(8) = 1.88in $(f_{t} + f_{c})$ (203 + 66i) $H_{c} = \frac{M_{a} + L_{L}}{S} (0.5)(y)(h_{2}) = \frac{(205 + 114)(12)}{5} (0.5)(1.85)(40)(2)}{5}$ NC= 337 K Asmin = 14c = 337 = 11:24 12 0.5 fg (0.5)(60)

Asmin = 11.24 = 0.201 102/A USE # 4@ Bin oc. Borrow= 0.29 in 2/ft MIN LENATH -> 1/3 CLR SPAN & CENTERED IN POSITIVE MOMENT (ACI 18,9.4.1) No. 937 811E Engineer's Computation Pad Hey. Mon. Region As my = 0.00075 Acc (18.9.3.3) Supports! E CONTROLS $A_{c+} = \max (B_{i-}) [(30')(40')](12) = 3840 \text{ in }^2$ **© STAEDTLER**° Asmin = 0,0005 (38 40) = 2.8 Bin 2 USE 10 #5 (3,1,n2) or Equir. MUST SPAN 1/6 CLEAR SKAN ME ON RACH END SIDE OF SUPPORT'S OF LEAST 4 BARS Reg in ELECTI DIRECTION & SHALL NOT EXCERS 12" SPACING 4 WITHIN 1.5 th from Face of Support (12") (18,9,4,2 & 18,9,3,3) Check min Reinfwant is Sufficient for 41tomate STREASENH Mn= (Asty + Aps fp1)(d - 92) Aps= 0,153 (33) = 5,049 , 2 fps = fse + 10000 + fcbd 4/4 = 4% = 5>35 fps= 174000 + 10000 - [(5000)(40)(12)d] = 18000 + 1584.47 d 300 (5:044) 9= Acty + Arstes

51 | P a g e

	C Supports
0.	$d = B - \frac{3}{4} + \frac{1}{4} = 7''$
	fps = 184000 + 1584, 47 (7) = 195092 psi
ion Pad	q = (3.1)(60) + (5.049)(195) = 0.57 0.85(5)(40x12)
omputat	$\phi_{Mn} = 0.9 \left[(3.1)(60) + (5.041)(195) \right] (7 - \frac{0.57}{2})(1/2)$
37 811E eer's Co	= 590 1 LT321/2 -' Rein For ULT. CONTROLS
No. 90 Engine	732 = 0.9 [(As)(60) + (5.04) (195) 7. [7 - (As(60)+(5.049)(195))7/1.
ER	(Z <u>0 40</u>) Z
EDI	As $ny' = 8.06 \text{ in }^2$
217	(14) - (CO INTERIOR Suppliers
	d = b' - 1'' = 7''
	fps = 184000 + 1584.17(7) = 195092 pst
	9 = (11, 24)(60) + (5, 044)(195) = 0.81
	$\phi_{Mn} = 0.9 \left[(11, 24) (20) + (5:044) (195) \left[(1 - \frac{9.91}{2}) \right] \right]$
	= 820, 5 - 7441. 12 Min BUN ALL
Se .	

Pressess key to BLANCE 70% of SW -05 = 0.7 (14)(30) = 2394 pir -> 2.4 k/r+ Force Headed to Count act Lobo No. 937 811E Engineer's Computation Pad $P = \frac{1}{Ba} = \frac{(2,d)(4)^2}{B(\frac{1}{12})} = \frac{(2,d)(4)^2}{B(\frac{1}{12})} = \frac{1}{B(\frac{1}{12})}$ 8232 Check Precomp. Allounce # TENDONS = 8232 = 30,9 - 9 USE 31 26.6 K/TEN **STAEDTLER** PACT = (31)(266) = 824.62 - + hog = 823 (24)=244 DETERMINE ACT PRECOND, STRESS PACT = 8.24.6 (1000) = 252.6 psi 2300 psi -ol > 120 psi Toz WE = ZAK/Ft TOD = (1142 30) = 3420 plf -> 3.4 k/Ft > 2.4 -ou Peff = BZAUK

(DL+PT) STAGE 1 1 STRESS IMMEDIATELY AFTER JACKING MIDSHAN for = (-439 + 270)(12000) -252.6 -663.7 psi comp 2 4933 No. 937 811E Engineer's Computation Pad 0.6fc; > 663.7 More frot = (439 - 270) (12000) - 252.6 = 158, 5 pi Tan 4973 3)FL: 7 158,5 NOL Support STHESSES **STAEDTLER** for = fron = - f = - 252.6 pri comp 0.6 fil: > 252.6 YOK STLASSES @ Service (DL+LL+Pt) STARE 2: MIDSPAN fror = [439-236+270) (12000) - 2526 = -1237.8 pii ap 4933 0.45 f'L >1237.8 - 02 frot = (419+236-270)(12000) - 252.6 = 732,6 psi The 4933 6 TEL X 732.6 . . 12ein Reg Support - 252.6 ps comp 0,45 f'L 7 252,6 OK-

	4LTAMATE STRENGTH (No Sociedy Nomints)	
	Low Combination	
ad	Mu = 1,2 Mpc + 1,6 Muc = 12 (139) + 1,6(236) = 704,4 k-Fe	
ation P	Deterne Min Bundes sein	
Comput	Positive Moment	
137 811 neer's C	fit = 2309 pri > 2 FEE = 14 piti, Reit Reguired	
Engir	Min Pos. Koin Regid	
LER	$y = \frac{f_{*}}{f_{t} + f_{c}} h_{c} = \frac{(230, 9)}{30, 9 + 736, 2} (9.07) = 2.2i_{-}$	
4EDT	$4 - \frac{1}{29} + \frac{22}{22} (-5)(22)(30)(144) = -50 K$	
@ 21/	4 933	
	$As_{min} = \frac{650}{(0.5)(0.5)} = 21, 6102$	
	As == = 21,6 = 0.72 , ~ 2/Pt	
	30 the # (@ 6" or	
	Her Kith Kog -> see other Span	
	_0	
0		

arch min poinforment is Soft. For us, STRANGTH Aps = (0,53)(31) = 4,743, n2 4/4= 30/8 = 3.75 >35 fps = 174000 +10000 + (5000)(30)(12)d = 184000 +1265d No. 937 811E Engineer's Computation Pad 300(4.743) a= Asty + Arifes Mn= (As fy + Ars fps) (d- 2) C Canter Span deff = 9.07-1 = 8.07 " **STAEDTLER**° fps = 184000+ 1256 (8.07) = 194123 psi a= (23,3)(60) + (4,747)(194) = 1.51(0.85)(5)(30)(12) $\phi_{Mn} = 0.9 \left[(23.2 \chi_{60}) + 4.7 dr (19d) \right] (9.07 - \frac{15}{2})$ \$ Mn = 1942 #++ > 904.4'E -a # 6 @ 6 1/2" oc.

Check Punching show (TREAT LIKE NO WSB & B"SLAG) -WT = 1,2(114+25) +1.6(70) = 278.8 pof Vy = wy A = 0.279 (30×40- (2.5)= 333K No. 937 811E Engineer's Computation Pad SAY deff= 7,36" bo = (30 + 7,36) 4= 149,4in 1Vc= d) FE bod = 4 Joovo (141,4) (7,36) = 311. K OVE LVU .. NEED PROP PANELS V. SOVe **STAEDTLER** 33000 = 0.75 (4) 5000 [4 (30 ta)]d d= 10" DIC= 339.42 Heed 11.25" Drop Maria -> USE 11/2 PANEL Oleck BM SHEDR @ Physel Assure 10' Phones VU= 0.278 (20×30) = 160.2K QVC = 0.75 (21 1500) (10 x12)(10.25) = 130.52 Vazove -. NG IN CREASE DANKE E Ve L QUE 160.2 = 0.75 (2) 5000 (10x12)d d=12.6" ---- SAT 12.75" USE 14" Prop pour @ SLAG V== 0,278(30:10) = 83,4 k OVC = 0.75(2) 5000 (30 "12) (6.75) = 257.8K duc > vu voc STOTEM SW @ PANEL DE INTELEST € (150) + 30 + d0 + 12 (150)(10)(0) + 12 (150)(2)(00) = 113 psf (30)(40) Sw =